

European interoperability certification challenges in railway lines upgrading projects

Предизвикателства в сертифицирането за съответствие с Европейската оперативна система на проекти за модернизация на железопътни линии

Phd. Marek Pawlik, Railway Instytut

Poland - 20 000 km of lines INSTYTUT KOLEJNICTWA

20 000 kms of railway lines (38 000 kms of railway tracks)

Operational cost per year 2 000 000 000,- euro (60% by state, 40% by operators)

Investments – **upgrading projects** (budget perspective 2020 (23)) **16 000 000 000,- euro** (80% by EU funds, 20% Poland)

Investment – **new line** (high speed) 6 000 000 000,- euro

' interoperability ':

the ability of the railway system to allow the <u>safe and</u> <u>uninterrupted movement</u> of trains, which accomplish the required levels of performance for , depending on all the <u>regulatory, technical and operational conditions</u> which must be met in order to

satisfy the essential requirements

- Safety
- Reliability and availability
- Health

- Environmental protection
- Technical compatibility
- Accessibility

' new approach ' :

- Only products satisfying harmonized **essential requirements** can be put on the European Union market;
- Technical Specifications for Interoperability (TSIs), European Specifications (ETCS/GSM-R) and harmonized standards (ENs) for predefined scopes are based on essential requirements;
- **Essential requirements** are assumed to be satisfied, when regula-tory, technical and operational conditions specified in respective TSIs, European specifications and ENs are fulfilled;
- Essential requirements can be satisfied in another way;
- EC certification has to be based on allowed conformity modules.

' intraoperability ':

- Railway systems in different EU Member States are satisfying essential requirements – railway is safe, reliable, health and environment supportive, accessible and <u>technically coherent</u>;
- Railway systems on Member State level are intraoperable;
- Set of MSs intraoperable railway systems, thanks to interoperability has to be replaced by EU interoperable railway system.
 upgrade railway with EU funds keeping national railway system technical coherency

Cert. environment

INSTYTUT KOLEJNICTWA

- technical parameters
- operational restrictions

Requirements' conformity - maintenance recommendations essential requirements:

safety - health
technical compat.
reliability - accessibility
Rules & procedures
Safety Management SMS
Safety monitoring

verification by independent bodies

NBs, DBs, ABs

gained experience

Safety supervision

Dir. 2008/57/WE + TSI "interoperability" Dir. 2004/49/WE + CSM "safety"

Cert. environment

INSTYTUT KOLEJNICTWA

- **2** EU Parliament Directives on interoperability and on safety
 - EU Commission Directives changing annexes to Parliament Directives
 - EU Commission Regulations establishing
 - Technical Specifications for Interoperability TSIs
 - Common Safety Methods CSMs

European Spec. & Standards (obligarotry and harmonized)

- Railway Agency European Specifications (ETCS, GSM-R, TAF, TAP)
- CEN TC 256 Railway standards
- CENELEC TC 9X Railway electric and electronic applications
- ETSI RP Railway communication

National requirements

196

8

17

Examples of Challenges INSTYTUT KOLEJNICTWA

- First key decisions to be made before design phase in railway lines upgrading projects
 - railway lines categories and railway track parameters
 - railway lines' power supply main parameters
 - railway lines' control command & communication A & B classes
- Adjusting railway stations for persons with reduced mobility
- Renewal of overhead catenary without touching power supply
- Infra managers / contracting entities cooperation with assessment bodies (NB, DB, AB)

Lines & tracks categories

Lines are classified based on the type of traffic (traffic code) characterised by following performance parameters: gauge, axle load, line speed, train length usable length of platform.

Traffic code	Gauge	Axle load [t]	Line speed [km/h]	Usable length of platform [m]
P1	GC	17 (*)	250-350	400
P2	GB	20 (*)	200-250	200-400
P3	DE3	22,5 (**)	120-200	200-400
Traffic code	Gauge	Axle load [t]	Line speed [km/h]	Usable length of platform [m]
P4	GB	22,5 (**)	120-200	200-400
Р5	GA	20 (**)	80-120	50-200
Р6	G1	12 (**)	n.a.	n.a.
P1520	S	22,5 (**)	80-160	35-400
P1600	IRL1	22,5 (**)	80-160	75-240

Performance parameters for passenger traffic

Traffic code	Gauge	Axle load [t]	Line speed [km/h]	Train length [m]
F1	GC	22,5 (*)	100-120	740-1050
F2	GB	22,5 (*)	100-120	600-1050
F3	GA	20 (*)	60-100	500-1050
F4	G1	18 (*)	n.a.	n.a.
F1520	S	25 (*)	50-120	1050
F1600	IRL1	22,5 (*)	50-100	150-450

Performance parameters for freight traffic

Track parameters

INSTYTUT KOLEJNICTWA

- Nominal track gauge
- Cant deficiency
- Equivalent conicity
- Rail inclination

- Cant

- Abrupt change of cant deficiency
- Railhead profile for plain line

Equivalent conicity calculated for amplitude (y) of the wheelset's lateral displacement:		
— y = 3 mm,	if $(TG - SR) \ge 7mm$	
$-y = \left(\frac{(TG - SR) - 1}{2}\right),$	if $5mm \le (TG - SR) < 7mm$	
— y = 2 mm,	if $(TG - SR) < 5mm$	
where TG - track gauge and SR - distance between wheelset flange contact faces.		

Equivalent conicity design limit values		
v ≤ 60	Assessment not required	
60 < v ≤ 200	0,25	
200 < v ≤ 280	0,20	
v > 280	0,10	

reduced mobility persons

- Parking facilities for persons with disabilities and reduced mobility,
- Obstacle-free routes
- Floor surfaces
- Toilets & nappy change
- Ticketing, info, assistance Lighting
- Spoken information

- Doors and entrances
- Highlighting of transparent obstacles
- Furniture and free-standing devices
 - Visual information,
- Platform width & edges & ends

Changing / reneval of the overhead catenary – part of subsystem

no final "subsystem EC verification certificate" can be issued

it is frequently required due to EU financing.

calculations based on timetable & traction vehicles are required

Line with 25 kV supply – EU requirements for track occupation.

class A and B class A – GSM-R – voice / data

- **MS mobile stations**
- **BSS Base Station Sub-system**
- NSS Network Switching Sub-system
- **OMS Operation & Maintenance Sub-system**

Assessment & certification INSTYTUT KOLEJNICTWA

- It is legally required to assess both

- products (e.g. slippers for EU market and switches for PL one),
- subsystems (e.g. infrastructure INF, energy ENE, signalling CCS) subsystems are not just sets of certified products
- Subsystems' EC verification certificates are required intermediate EC verification certificates are optional each certificate forms a basis for mandatory EC declaration

- Cooperation with assessment bodies starts with design phase

- Notified Bodies (NB) are veryfying fulfilment of EU requirements,
- Designated Bodies (DB) are veryfying fulfilment national ones,
- Risk Assessment Bodies (AB) are veryfying safety (interfaces).

Thank you for your kind attantione

Phd. Marek Pawlik, Railway Instytut